Una QuickSelect con una mediana de cinco elementos
Frecuentes
Visto 2,113 veces
0
I have been trying to implement the quickselect algorithm as part of the homework. I have read up on the way quicksort works to know how the partition works and finding the median of five elements etc. But when it comes to the partitioning, I am in a soup.
I realize that the result of my partition does not contain the elements in the (less than pivot) | pivot | (greater than pivot)
form. I have been breaking my head over this, but I can't seem to get the hang of it.
The quick select algorithm I have adapted from Wikipedia and I am using the iterative version (a requirement mentioned to me). My quickselect algorithm is as follows:
public static Numbers quickselect(Numbers[] list, int arraylength,
int kvalue) {
int start = 0, end = arraylength - 1;
if (arraylength == 1)
return list[start];
while (true) {
int newPivotIndex = partition(list, start, end);
int pivotDist = newPivotIndex - start + 1;
if (pivotDist == kvalue)
return list[newPivotIndex];
else if (kvalue < pivotDist)
end = newPivotIndex - 1;
else {
kvalue = kvalue - pivotDist;
start = newPivotIndex - 1;
}
}
My Partition Algorithm :
private static int partition(Numbers[] list, int start, int end) {
Numbers[] tempMedianArray = new Numbers[5];
tempMedianArray[0] = list[start];
tempMedianArray[1] = list[(start + end) / 4];
tempMedianArray[2] = list[(start + end) / 12];
tempMedianArray[3] = list[(start + end) / 2];
tempMedianArray[4] = list[end];
Numbers pivot = getmedian(tempMedianArray);
int i = start, j = end;
while (i <= j) {
while (compare(list[i], pivot).equals(Order.LESSER)){
i++;
}
while (compare(list[j], pivot).equals(Order.GREATER)){
j--;
}
if (i <= j) {
Numbers tmp = list[i];
list[i] = list[j];
list[j] = tmp;
}
};
Once the pivot is chosen I thought that the standard Hoare's algorithm would work. But when I perform the dry run itself, I know I am wrong.
Can some one help me get the proper implementation of the partition algorithm which works with a median of five pivot?
2 Respuestas
0
You have to keep on adding the start while getting the temp array index.
int localStart = 0;
int localEnd = end - start;
Number[] local = new Number[5];
tempMedianArray[0] = list[localStart + start];
tempMedianArray[1] = list[(localStart + localEnd) / 4 + start];
tempMedianArray[2] = list[(localStart + localEnd) / 4 * 3 + start];
tempMedianArray[3] = list[(localStart + localEnd) / 2 + start];
tempMedianArray[4] = list[localEnd + start];
Respondido 26 ago 12, 06:08
0
Qué tal si:
tempMedianArray[0] = list[start];
tempMedianArray[1] = list[(start + end) / 4];
tempMedianArray[3] = list[(start + end) / 2];
tempMedianArray[2] = list[3 * (start + end) / 4];
tempMedianArray[4] = list[end];
Respondido 25 ago 12, 00:08
No es la respuesta que estás buscando? Examinar otras preguntas etiquetadas java algorithm quicksort or haz tu propia pregunta.